> Toutes nos certifications > Intelligence artificielle, traitement d’image avec Python

Formation : Intelligence artificielle, traitement d’image avec Python

Intelligence artificielle, traitement d’image avec Python

Télécharger au format pdf Partager cette formation par e-mail 2


Ce cours Python d’intelligence artificielle, vous permettra de réaliser des analyses de données en machine learning. Vous apprendrez à transformer une image et à en extraire des informations. Nous vous présenterons les bibliothèques de traitements d'image les plus usitées dans les projets de deep learning.


Inter
Intra
Sur mesure

Cours pratique en présentiel ou en classe à distance

Réf. PYI
Prix : 1870 € H.T.
  3j - 21h00
Pauses-café et
déjeuners offerts




Ce cours Python d’intelligence artificielle, vous permettra de réaliser des analyses de données en machine learning. Vous apprendrez à transformer une image et à en extraire des informations. Nous vous présenterons les bibliothèques de traitements d'image les plus usitées dans les projets de deep learning.

Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
  • Approfondir ses connaissances en langage Python
  • Réaliser une analyse de données en Machine Learning en Python
  • Découvrir des bibliothèques Python de traitement d'image
  • Transformer une image
  • Extraire des informations d'une image

Public concerné
Développeurs Python désirant s'approprier les principaux dispositifs d'apprentissage automatisé et de traitement d'image.

Prérequis
Pratique du langage Python et connaissances de NumPy et SciPy.
Vous recevrez par mail des informations permettant de valider vos prérequis avant la formation.

Programme de la formation

Le traitement de l'image

  • La bibliothèque Pillow pour transformer les images.
  • Présentation de bibliothèques d'analyse d'image.
  • Manipulations simple d'image avec NumPy.
  • Présentation de Matplotlib pour l'affichage rapide.
Travaux pratiques
Utilisation de Pip ou Conda, transformations simples et manuelles d'images avec Numpy.

Traitement plus avancé des images

  • Filtrage, analyse et recherche d'information avec Scikit-image.
  • Présentation et transformations avec OpenCV.
  • OpenCV : détection de contours et de motifs.
Travaux pratiques
Mise en place des bibliothèques, manipulation et analyse d'images avec Scikit-image et OpenCV.

Apprentissage automatisé

  • Mise en place de Scikit-learn.
  • Exemple de données utilisables et classification des processus d'apprentissage automatisé.
  • Choix et utilisation d'un estimateur.
  • Amélioration de l'apprentissage supervisé et transformateurs.
Travaux pratiques
Multiples apprentissages supervisés sur des ensembles de données avec Scikit-learn.

Cas additionnels d'apprentissage automatisé

  • Décomposition - analyse en composantes principales et analyse discriminante linéaire.
  • Apprentissage non supervisé : multiples approches.
  • Divers algorithmes de classification.
Travaux pratiques
Utilisation d'algorithmes d'apprentissage additionnels de Scikit-learn.

Apprentissage pour les images

  • Classification d'image avec Scikit-learn, retour sur les algorithmes disponibles.
  • Présentation et installation de scikit-image.
  • Bibliothèque d'adaptation de l'apprentissage automatisé aux images numériques
  • Entrées et sorties de Scikit-image.
  • Analyse des images avec Scikit-image : segmentation, détection, mesures.
  • Transformations simples d'image avec Scikit-learn : convolutions et autres filtres.
  • Comparaison et assemblage d'images avec Scikit-image.
  • Amélioration d'image avec Scikit-image.
Travaux pratiques
Classification d'images, détection de visage, reconstitutions et améliorations avec scikit-learn et scikit-image.


Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Parcours certifiants associés
Pour aller plus loin et renforcer votre employabilité, découvrez les parcours certifiants qui contiennent cette formation :

Solutions de financement
Pour trouver la meilleure solution de financement adaptée à votre situation : contactez votre conseiller formation.
Il vous aidera à choisir parmi les solutions suivantes :
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • France Travail sous réserve de l’acceptation de votre dossier par votre conseiller France Travail.
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • France Travail sous réserve de l’acceptation de votre dossier par votre conseiller France Travail.

Avis clients
4,2 / 5
Les avis clients sont issus des évaluations de fin de formation. La note est calculée à partir de l’ensemble des évaluations datant de moins de 12 mois. Seules celles avec un commentaire textuel sont affichées.
CEDRIC B.
27/05/24
4 / 5

Compréhensible, répond à toutes les questions. Un peu trop de temps sur des parties (fonction affichage d’image) Le contenue permet de voir une partie théorique et global de l’IA et du traitement d’image via Python
ERIC K.
27/05/24
4 / 5

Très bonne formation, un peu difficile à suivre en ligne
PIERRE B.
27/05/24
5 / 5

RAS




Horaires
En présentiel, les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
En classe à distance, la formation démarre à partir de 9h.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 16h le dernier jour.

Dates et lieux
Sélectionnez votre lieu ou optez pour la classe à distance puis choisissez votre date.
Classe à distance