> Toutes nos certifications > Bases de données NoSQL, enjeux et solutions

Formation : Bases de données NoSQL, enjeux et solutions

comment choisir la solution NoSQL adaptée à vos besoins

Bases de données NoSQL, enjeux et solutions

comment choisir la solution NoSQL adaptée à vos besoins
Télécharger au format pdf Partager cette formation par e-mail 2


Les bases de données NoSQL n'offrent pas de langage de requête aussi riche que le SQL. Elles répondent d'abord à des contraintes de volumétrie et à un manque de structuration des données. Ce séminaire présente les différents types de bases NoSQL, leurs architectures, leurs utilisations ainsi que les produits du marché.


Inter
Intra
Sur mesure

Séminaire en présentiel ou en classe à distance

Réf. NSQ
Prix : 2090 € H.T.
  2j - 14h00
Pauses-café et
déjeuners offerts




Les bases de données NoSQL n'offrent pas de langage de requête aussi riche que le SQL. Elles répondent d'abord à des contraintes de volumétrie et à un manque de structuration des données. Ce séminaire présente les différents types de bases NoSQL, leurs architectures, leurs utilisations ainsi que les produits du marché.

Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
  • Identifier les différences entre SGBD SQL et SGBD NoSQL
  • Évaluer les avantages et les inconvénients inhérents aux technologies NoSQL
  • Analyser les principales solutions du monde NoSQL pour chaque modèle de données
  • Identifier les champs d'application des SGBD NoSQL en opérationnel et en analytique
  • Comprendre les différentes architectures, les modèles de données, les implémentations techniques

Public concerné
Direction informatique et fonctionnelle. Responsables informatique, chefs de projet, architectes, développeurs.

Prérequis
Connaissances de base des architectures techniques et du management SI. Connaissances en bases de données.
Vous recevrez par mail des informations permettant de valider vos prérequis avant la formation.

Programme de la formation

Introduction au NoSQL

  • L'historique du mouvement NoSQL.
  • Les différentes approches de gestion de SGBD à travers le temps : hiérarchiques, relationnelles, objets, XML, NoSQL.
  • Les cinq « V » du big data : Volume, Variété, Vélocité, Véracité, Validité.
  • Données non structurées : activité web, échange de documents, réseaux sociaux, open data, IoT.
  • Les grands acteurs à l'origine du mouvement NoSQL et du big data analytique : Google et Amazon.
  • Vue synoptique des différents types de moteurs NoSQL du point de vue du modèle de données.
  • Le NoSQL, le big data et les architectures cloud : principes d'architecture communs et divergents.
  • Les modes de distribution : avec maître et décentralisé.
  • Transactions distribuées, failover, points de sauvegarde, parallélisation des requêtes, équilibrage de charge.
  • Le positionnement du NoSQL au sein du big data analytique : de l'ère de la transaction à l'ère de l'interaction.
Réflexion collective
Pourquoi le NoSQL ? Et pourquoi son succès ? Les besoins, l'évolution des architectures, la distribution et l'élasticité, le commodity hardware, quelques scénarios d'utilisation.

Le relationnel et le NoSQL.

  • Les bases de données relationnelles : leurs forces et leurs limites.
  • Structuration forte des données (schéma explicite) versus structure souple (schéma implicite) et la modélisation Agile.
  • Des qualités ACID aux qualités BASE.
  • Théorème CAP (cohérence, disponibilité, tolérance au partitionnement).
  • Les différents niveaux de cohérence.
  • Le langage SQL, la performance des jointures. L'accès par la clé en NoSQL.
  • L'évolution vers le distribué : extensibilité verticale et horizontale.
  • Comprendre le NoSQL par le modèle de l'agrégat et de la centralité de la donnée.
  • le NewSQL, un redesign des moteurs relationnels pour la distribution. Étude de CockroachDB.
Réflexion collective
Le modèle de l'agrégat versus le modèle relationnel : comment choisir ? Comment gérer l'interopérabilité ?

Les mondes du NoSQL

  • Monde du NoSQL à travers ses choix techniques et différentes bases NoSQL libres (du moins structuré au plus structuré).
  • L'architecture distribuée : principes, le shared-nothing.
  • Disponibilité et cohérence différée : gossip, timestamps, la règle de majorité, l'arbre de Merkle.
  • Les patterns et les modèles. Comment modéliser et travailler efficacement en NoSQL.
  • Les bases orientées clé-valeur et en mémoire : Redis, Riak, Aerospike.
  • Les bases orientées documents : le format JSON. Couchbase Server, MongoDB.
  • Les bases orientées colonnes distribuées pour le big data opérationnel : Hbase, Cassandra, ScyllaDB...
  • Les moteurs orientés graphes : Neo4j, OrientDB...
  • Les moteurs de recherche JSON : Elasticsearch, SOLR.
  • Les bases de données de séries de temps : InfluxDB, KDB, Prometheus.
Démonstration
Démonstrations techniques, du point de vue de développement, de la mise en œuvre et de l'administration, des principaux moteurs NoSQL libres.

Choisir et mettre en place

  • À quels usages correspondent les bases NoSQL ?
  • Comment aborder la migration ?
  • Comment développer efficacement avec des bases NoSQL ?
  • Quels outils de supervision et comment les choisir ?
  • Quelle est la complexité administrative et la courbe d’apprentissage ?
  • Cas d’utilisation dans des entreprises existantes.
  • Gérer les interactions avec les bases de données relationnelles.
  • Implémenter des stratégies NoSQL avec des moteurs relationnels. L’exemple de PostgreSQL et ses extensions.
  • Implémenter le NoSQL dans les clouds publics. Les pratiques et les offres de bases de données en tant que service.
Réflexion collective
Quel est l’intérêt de déployer des moteurs NoSQL dans le contexte de chacun et quel moteur NoSQL choisir ?

NoSQL et Big Data

  • Big data analytique : l'écosystème Hadoop.
  • Stockage et traitements. Les différentes formes de stockage dans HDFS : SequenceFile, Apache Parquet.
  • Fonctions et usages : moteurs de recherche, outils de suggestion commerciale, détecteurs d'intrusion...
  • Différents types de traitements : MapReduce, graphe orienté acyclique, flux, machine learning, graphes distribués...
  • Fonctionnalités, outils et algorithmes : moteurs de recherche, Google Search, l'algorithme PageRank.
  • L'outil intégré : Apache Spark.
  • Connexion avec les moteurs opérationnels : ETL, Apache Sqoop.
Démonstration
Démonstrations de l'usage d'une plate-forme intégrée de big data analytique comme Apache Spark.


Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Solutions de financement
Pour trouver la meilleure solution de financement adaptée à votre situation : contactez votre conseiller formation.
Il vous aidera à choisir parmi les solutions suivantes :
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • France Travail sous réserve de l’acceptation de votre dossier par votre conseiller France Travail.
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • France Travail sous réserve de l’acceptation de votre dossier par votre conseiller France Travail.

Avis clients
4 / 5
Les avis clients sont issus des évaluations de fin de formation. La note est calculée à partir de l’ensemble des évaluations datant de moins de 12 mois. Seules celles avec un commentaire textuel sont affichées.
JEAN-FRANCOIS B.
06/06/24
4 / 5

Très intéressante, je maîtrisais moins la partie Datalake/Datawarehouse. La partie sur l’IA ne m’intéressait pas.
LAETITIA G.
06/06/24
5 / 5

Très didactique
CATHERINE M.
06/06/24
5 / 5

Intense mais avec des sujets abordés très intéressants qui m’a permis de découvrir beaucoup plus de solutions NoSQL que je ne pensais. Formateur très pédagogue avec des temps de présentation et de démo bien calés.




Horaires
En présentiel, les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
En classe à distance, la formation démarre à partir de 9h.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 16h le dernier jour.

Dates et lieux
Sélectionnez votre lieu ou optez pour la classe à distance puis choisissez votre date.
Classe à distance